SDSS II Supernovae with BOSS Host-redshift

Heather Campbell

Thanks to my collaborators: Bob Nichol, Hubert Lampeitl, Mat Smith and all the team

Plan

- SALT2
- False Discovery Rate
- Hubble Diagram
- Work in progress: Cosmological Constraints
- Work in progress: Bias testing
- Summary and further work

SALT2

- 658 SN host galaxies with accurate redshifts
- Plug all into SALT2 to fit the light curve
- 580 ran successfully through SALT2
- 78 failed to be fitted by SALT2

Examples of light curves: fitted with SALT2

 $\alpha = 0.1$ B = 2.77

Z=0.3961

Z=0.3319

Z=0.0495

Examples of light curves: 78 failed SALT2

False Discovery Rate (FDR)

Miller et al. 2001

- Adaptively control the number of false discoveries (fraction of false rejections made over the total number of rejections performed) made when conducting multiple hypothesis tests.
- Left of line are rejected

$$\text{FDR} = \frac{N_{\text{null true}}^{\text{reject}}}{N_{\text{reject}}^{\text{reject}}} = \frac{N_{\text{null true}}^{\text{reject}}}{N_{\text{null true}}^{\text{reject}} + N_{\text{null false}}^{\text{reject}}},$$

Hubble Diagram 1

SDSS II spectral sample

- Plotted a Hubble diagram of the confirmed type Ia for SDSS II and fitted a 4th order polynomial to it.
- Overlaid this line on all the spectrally classified data.
- Used False Discovery Rate to remove SN with a low probability of belonging to the Ia distribution.

Hubble Diagram 2

All BOSS first year

- Distance modulus calculated for 580 supernovae, which ran through SALT2.
- Put all on Hubble Diagram ignoring type.
- Overlaid polynomial line from spectral type Ia on the unclassified BOSS data.

Hubble Diagram 3

BOSS first year -Type la

- Used False Discovery Rate to remove SN with a low probability of belonging to the la distribution.
- New Hubble diagram of 235
 SN with host redshifts

```
Blue = spec Ia = 52
Red = already had host spectra = 30
Black = new = 153
```


Work in progress: Cosmological Constraints

BOSS 235 SN la fitted in cosmomc

- Using Cosmological MonteCarlo (COSMOMC)
- Fortran 90 Markov-Chain Monte-Carlo (MCMC) engine for exploring cosmological parameter space
- Just this new data
- In future: use in combination with other probes. (BAO, WMAP etc)

68% and 95% confidence limits color-shaded regions show the mean likelihood of the sample

Work in progress: Cosmological Constraints

Lampeitl et al. 2009

- Using Cosmological MonteCarlo (COSMOMC)
- Fortran 90 Markov-Chain Monte-Carlo (MCMC) engine for exploring cosmological parameter space
- Just this new data
- In future: use in combination with other probes. (BAO, WMAP etc)

Work in progress: Bias testing SDSS II spectrally confirmed

- 1) SDSS II spectrally confirmed
- 2) SDSS Simulations (Kessler)
- Comological analysis of Type Ia and comparied to my cut on all supernovae

Bias - SDSS simulation

Random: type la plus not la

My classified la

Bias - SDSS simulation

Random 1: type la

My classified la

Summary

- 658 reliable Host galaxy redshifts
- New method for rejecting non la's, maybe useful for future surveys.
- New Hubble diagram with 235 SN Ia (52 spec Ia, 30 host spectra, 153 new)

Further Work

- All Host Galaxy Redshifts by the end of October!!
- Find the best fit cosmology
- Investigate the bias caused by the polynomial fit and look at alternative classification methods
- Paper of cosmological analysis next year